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In calculating low Mach number flows one faces the stiffness problem in two
different facets:

e the applicable time steps become very small
e the constants of the cancellation errors become very idrgeM?).

Usually the first point receives attention. Here we wantdacentrate on the can-
cellation problem onlyTo our knowledge there is no detailed investigation of this
problem in the related literature. In primitive variable formulations the problem can
be solved by using the pressure coefficient instead of the pressure and a similar vari-
able for the temperature or the internal energy. In conservative variable formulations
this is thought not to be possible and therefore is sacrificed. We are able to show that
a local reference state can also be introduced into a conservative scheme, if carefully
applied to all quantities and applied to all constituent parts of the program. A detailed
error analysis is given for all these parts. Finally, we show that we can perform a very
low Mach number calculation &1 = 10-* with a seven digits arithmetic only and
still maintain the set of conservative variables. The governing equations are unaltered
and the method depends neither on the time integration scheme nor the specific dis-
cretization. The method should be used in connection with the standard strategies like
preconditioning, multigrid, or an (semi-)implicit method if acceleration is desired.

(© 1999 Academic Press

1. INTRODUCTION

In recent years the interest of many researchers has focused on the calculation of
pressible low Mach number flows. Initially, the reason for doing so was the interest to
commercial codes in the incompressible limit [16], thereby closing a gap in the Mach nu
ber range, accessible by incompressible and compressible formulations. Since the time
for integrating the Euler equations is restricted by the fast acoustic waves, but the solu
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sought is usually also depending on the spreading of entropy waves, the number of |
steps needed grows with(1/M). Thus the point which primarily attracted attention was
the stiffness of the equations, resulting in a large number of required time steps. We obs
that the interest in compressible low Mach number flows has shifted to the case wt
density variations (e.g., created by combustion) are not vanishing fer 0.

Many proposals have been made to treat low Mach number flows. A good and exten
review can be found in an article by R. Klein [7]. Not considered in this review is the bran
of methods trying to find a steady state solution by preconditioning the equations, partl
connection with multigrid methods as used by van Leteal. [14] or implicit methods as
in [3] by Chen and Pletcher.

Klein [7] requires that large amplitude density variations should be allowed, all wav
should be promoted by their correct signal speeds, appropriate pressure variables fo
thermodynamic and acoustic fluctuation range should be considered, and long wave ac
tics with pressure amplitudép/ p. = O(M) should be accurately described.

In previous work we focused on the problem of the small time steps. Thereby we obser
that even if the convergence can be accelerated substantially by preconditioning or multi
methods, the accuracy severely deteriorates at very low Mach numbers. A multigrid sch
converges with a sufficient rate but we were only able to reduce the residual a few deca
depending on the Mach number.

Related observations or remarks are given in literature, see, for example, [7, Sect.
16, Concluding Remarks; 5; 15]. Some of these authors are aware of cancellation as
source of the problem but to our knowlege no analysis of the numerical situation is repol
in the literature.

Therefore this article entirely focuses on ttencellation of the numerical solutiarsing
modern finite volume schemes for the computation of low Mach number flows.

Numerical analysis is well aware of this process since in the pioneering days of com
tational sciences not even 6 digits were available to the scientist. The simple remedy i
introduce reference quantities into the equations and perform the calculation only on
fluctuations. A familiar variable of this type is the pressure coeffi&nt (po — p)/0oU3.

As shown in Section 2 it is not sufficient to introduce a reference quantity in the momenti
equation, but also in the energy equation and, if density chang@glofare present, in the
continuity equation as well.

Although the concept sounds simple in principle, application to the equations of co
pressible fluid flow is not straightforward.

Several attempts in that direction are reported in the literature. Bailely[2] introduced
in 1983 a pressure coefficient as an independent variable such that the Euler equa
for constant enthalpy reduce to the incompressible Euler equations in the incompres:
limit:

p= P =
QU3 ¥ Mg'

This eliminated parts of the problem since cancellation errors in formulating the press
flux can be avoided, as well as errors in the time integration scheme. However, they gav
error analysis and failed to see that the contribution of the kinetic energy to the total ene
also gives rise to cancellation errors. This was observed by Hafez and Soliman [6] in 1
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and consequently they also introduced a reference temperature,

F_ CpT 1
T}y -DMZ

Turkelet al.[13] reported a similar approach to that of Haéal.in 1993 but in connection
with preconditioning methods. In the same year, Shateh [11] used a pressure coefficient
as Briley did, thus also omitting referencing the kinetic energy.

However, all methods need new independent variables and cannot keep the set of
servative variableso( ou, ¢€) as independent variables which is important when one h:
all Mach number codes in mind and wants to ensure the correct shock speeds.

These reference formulations have not yet entered formulations using the conservz
variables although this would be highly desirable. The situation is further complicated
the fact that the speed of sound is also subjected to fluctuations. Thus it is even questior
whether a Riemann problem can be solved at all, without introducing cancellation err
at low Mach numbers. Guillard and Viozat [5] show theoretically the failure of the popul
Roe scheme by means of low Mach number asymptotics.

The major aim of this paper is to carry the referencing idea further and to employ it ri¢
orously in a conservative variable formulatiofhe proposed idea can be useful in code:
designed for all Mach number flow. Since only the accuracy of the computation is addres
one might want to use it in connection with acceleration techniques as described in the |
ature. The method can also be used to accurately compute acoustic problems as for exe
in noise reduction problems in the automobile industry. In these applications very sn
amplitudes have to be resolved, frequently on an almost incompressible background 1
In this case the proposed idea may be used to apply a conventional compressible flow s
to this kind of problem with moderate effort. (Apart from low Mach number flows a simile
situation is encountered in relativistic flows where the rest enagyis tremendously high
and plays a similar role as the high internal energy in the acoustic problems conside
here. Also, in modelling turbulence with adkmodel,w takes a finite, but very high value
at walls. In this case the cancellation process buries flux differences from the Euler pal
the equations under the large valuegoof

The present paper is organised as follows. First we demonstrate the mechanism of
cellation in a simple example: A pressure difference between two adjacent locations
a computational grid. Then we identify all occurrences of cancellation within an expli
finite volume code and show how the problem can be avoided by calculating the flow
perturbation to a reference state. In Section 4 we explain how the reference state shou
chosen. In the last section we validate the approach by comparing it with a two-dimensic
physical test case.

2. CANCELLATION OCCURRING IN CALCULATING LOW MACH NUMBER FLOWS

In this section we want to recall the concept of numerical cancellation, shown in-
ementary books from numerical analysis [12]. We want to illustrate the occurrence
cancellation within the CFD-framework using a pressure difference between two grid
cations in a smooth flow field. It is worth mentioning that this situation not only occurs
the momentum equation but also affects the energy equation.
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The pressure in the left grid locationgs, in the right it ispr. Suppose, both are evaluated
using an equation of state from conservative quantities as

@)

Hereing is the densityp€is the total energy per unit volumethe ratio of the specific heats,
andou the momentum per unit volume. To characterize the order of magnitude of each te
we introduce nondimensional quantitips= p/y 0,62, o€ = 08y /8,62, 0 = 0/00, and

oU = oU/0.0,. The values,, 0o, andé, are chosen to be characteristic flow quantities
Also introducing a reference Mach numbdg, ;= (,/&,, Eq. (1) becomes

(ou)®

p=(y—1)(ee—VM§ o ) (2)
Q

Now all the variables have the magnituw1), so we can readily see the influence of the

Mach number, controlling the relative magnitude of the kinetic energy term. It may becol

arbitrarily small, provided the Mach number is small enough. With this in mind, we writ

pL=po and pr=po+4p. 3

with p, = O(1) andép = (’)(Mg). Thus, the pressure difference becomes

PR — PL = (Po + P) — Po. 4)

Due to the limited number of digits available on a computer, a numerical calculation ¢
only be performed with a limited relative accuracy. For example, evaluation of the press
Pr = Po + 8p yields the numerical result

(Po+8p)(1+ €1).

Every arithmetic operation introduces a relative error, here characterized &yis not a
constant and depends on the floating point representation used on the specific compu
well as on the arguments of the specific operation. It may be estimagd a$ - 10~ when

t decimals are available for representation of the mantissa. It is assumed that no expa
overflow occurs. This is a reasonable assumption. This error is calleduhdoff error

in the literature. It is unavoidable and has to be distinguished fronsaheellation error
which occurs as an accumulation effect of roundoff errors. Cancellatintbe avoidedo

a certain extent by algebraically manipulating the formulas. This is demonstrated bel
Introducing a relative error in every operation, Eq. (4) yields

Ap = ((Po+8p)(1+€1) — Po) (1 + €2) 5)

for the computed pressure difference. Extracting the known exact 8gsualEq. (5) we find

+6
Ap=6p(1+ poap pel+62+0(eleg)), (6)
€ being the error introduced in the second operation. The leading error term is
Po + 8P 1
~~ — . 7
o O<M§>€1 )
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If this term is comparable to one, the relative error dominates the evaluation. We obst
that the relative error is scaled by 2 which explains the cancellation mechanism at smal
Mach numbers. Sincép is the pressure difference associated with the distance betwe
two grid points, we also expect an error dependency ljkext Refining the mesh will lead
to even worse results.

We give a numerical example. Calculating a flowhg = 102 with single precision
arithmetic, i.e.Je1] <5- 1077, will not preserve a single digit of the pressure difference
The calculation is already harmed at considerably higher Mach numbers as we will st
in Figs. 6 and 7.

We want to stress that this does not affect the momentum equation only. The nondir
sional expression for the total energy density is given by

oe=o(e +yMau?), (8)

wheree = €y /cZ is the nondimensional internal energy andi€l) by choice of the refer-
ence quantity. We can observe the same situation as in Eq. (2), so that the energy equ
will be affected by cancellation as well. This is also true if one uses primitive formulatio
with the temperature, the speed of sound, or similar quantities as the principal variable

The situation for the continuity equation is slightly better: Gibbs fundamental equati
dh=T ds+dp/e can, by use of the equation of state, be written as

dp—c?/y do = pds 9)

Heres in nondimensionalized by the specific heat at constant volume. We can see
density changes have the same order as the pressure changes, as loGy Bsambropy
changes are present. If there are, referencing the continuity equation is necessary too

3. HOW TO AVOID CANCELLATION

From Eq. (4) it is apparent how to avoid cancellation. We can rearrange the evalua
of Eq. (4) as

PR — PL = (Po + dp) — Po = (Po — Po) + &P. (10)
The numerical result now yields

Ap = ((Po — Po)(1 — €1) +3p)(1 + €2)

Po — Po Po — Po Po — Po
= 1
5p< + 5p €1+ 5p €2+e+ 5p 6162)

=8p(1+ep). (11)

Thus the numerical error is as small as the roundoff error. This is the best we can h
for. Please note that this result does not dependogn-(p,) dropping out. Ifp, would be
different on both sidegp,r and poL say, the resulting coefficient®or — pPoL)/Sp 0On the
second line of Eq. (11) would still be of magnitué@&1) instead of®(1/M?)

In a common finite-volume code for compressible flows are three operations leadin
cancellation:
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e the time integration
o the determination of the flux-difference
o the determination of the fluxes.

In the following sections, we first explain the concept and then show how to avoid canc
lation for each item. Please observe that the solved equations remain unaltered.

3.1. The Finite-Volume Setting

Let the conservative law be denoted as

g/uda)+/ f(uds=0. (12)
dt Jo a0

u= (o, oUi, 0€)" is the vector of conserved quantities and the flux functign) has the
component®Uy, pdik + oUjUx — Tk andoug(e + p/e) — Uitik — A(dT/dXk) in tensor
notation, using the common symbols. An explicit finite volume approximation reads

At
UMt =un - o > F'U)-s (13)

Readers not familiar with these concepts will find them, e.g., in the book by LeVeque |
U" is the approximation to the conserved quantityithin the celli at the time leveh, @
is the volume of the cellF (U) the numerical flux function across each interface, &nd
a vector with the direction of the outward normal. Its length is the absolute value of t
surface area. The sum extends over all sides of the control volume.

The basicidea of this paperisto introduce a suitable reference staeatla perturbation
3U to U, into the governing equations

3.2. The Error Introduced via the Time Integration

Inserting the perturbatiosiJ to the reference staté, into Eq. (13) gives
At
(U 4 8U)™T = (U, + 8U)! — aZI:"(UOJHSU) .S, (14)
i

If Uy is well chosen (cf. Section 4)J is small. In the following a numerical evaluation is
introduced which takes advantage of this. We restrict our considerations to a reference
U, = Uo(X, Y, 2) which is constant within time scales imposed by the acoustic waves.
might be readjusted according to the slow entropy waves. We subtract the reference -
from both sides of Eq. (14):

At
sUML = suP — o > F'(Up+48U)- S (15)
1

This already results in a numerically better scheme. To estimate the improvement, we loc
the magnitudes of the differentterms in Egs. (14) and (15). Suitably Sdgled) (1), U =

O (6), and% > F - S = O(). Herein,s is small and decreases at least with for low
Mach number flows. Thus all summands in Eq. (15) are of the same order, wherea
the original equation, cancellation occurs. The last formulation can be implementec
an existing code with little effort. We found the numerics of the resulting scheme to
substantially improved at Mach numbers as highvas- 0.01.
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3.3. The Error Introduced via the Flux-Difference

Next, the error introduced via the flux-difference has to be treated. Although we exp
% > F - Sto be small ag®)(8) it usually contains differences of large numbers. We presel
two approaches which avoid this situation, one calculating the flux-differaricgirectly,
and the other using the wave-propagation idea.

Calculating the flux-balance directly.First, we want to explain the concept by an ex-
ample in one space dimension on a uniform grid. The continuity equation in this c:
becomes

At
n+1 n
=o' — — Ur — oL Up). 16
0 Q X(QRR oLuL) (16)

()L and(.)r denote states at the left- and right-hand cell-interface. They have to be provic
by a Riemann solver. Introducing a perturbation to a referencegtatg we find

At
(00 +80)™ = (00 +80)" — B((Qo‘l'aQ)R(uo‘i‘&J)R —(00+80)L(Up+8U)). (17)

After rearrangement and subtractionggffrom both sides of Eq. (17)

At
n+l — 80" — — | ((0oUo)r — (0oUo)1)

5
@ AX
AF,

+ ((6oUo)R — (80Uo)L) + ((0odU)R — (008U)L) + ((808U)R — (B08U)L)
A(SF)

(18)

We can identify mixed products of the reference state and the perturbations. Here
have grouped terms together that we expect to be of equal magnitudes. Thus we sut
quantities of magnitud®(1), O(8), andO(8?) separately, thus avoiding cancellation. The
example above is one-dimensional but the same procedure can be applied independe
this constraint. Generally, the flux-balance of Eq. (15) is split into

> FUo+8U)-S=> FoUo+6U) S+ > 8F(Uo+8U)-S (19)

as indicated in Eqg. (18). Equation (15) becomes

At At
8Uin+1:5Uin+§ZFO.S+§Z(SFO~S (20)
i i

The sumy_F, - Sis the finite volume expression for the integj’% fo dS If the back-
ground flux yields}? = 0, this part will drop out.

Please note that Eq. (20) is not determined uniquely. It gives only the final form of t
integration scheme. Also note that the states at the left- and right-hand cell-interface
Eq. (18) are undetermined up to now.
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Wave propagation. Reference [8] is an alternative approach for calculating the flu

FIG. 1. Evolution of a Riemann problem.

Y

differences. The bulk contribution to the flux flowing homogeneottsigughthe control

volume drops out in a even more natural fashion. Consider a Riemann problem as depi

in Fig. 1 as itis assumed at each cell interface.

In order to find a suitable formulation for flux-difference splittings, we rewrite the flu.

differencef, — f, across an evolving Riemann problem as

fo— fa=(fo— fo) + (fa — fo) + (fo— fa) =D AfT 4+ ) Af~.

AfTresp.Af~ denotes the flux-differences which are associated with right- or left-runnir
waves.a andb are the initial left and the right states. Solving the Riemann problem or
finds the intermediate statesandd. We always look for the state on the time axis, which
may lie in any of the flow regiona, c, d or b, depending on the flow direction and Mach

number.

(21)

Now consider Fig. 2. From the viewpoint of a particular é¢ethe fluxes at the left and
right cell interfaces may be expressed as

fi_gp=fi — Z AfF

fi+1/2 = fi + Z Afg.

\

4

X

i-1

FIG. 2. Riemann problems at different sides of a control volume.

i

i+1

(22)

(23)
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The indiced. andR indicate a left and right interface of the cell. The integration may thu
be expressed as

sUML = sun +—Z(F|+ZAF ) S (24)

k indicates all cell interfaces, amilF * is constructed in accordance to Egs. (22) and (23
with an exact or approximate Riemann solver. Since all expressions are based pweell
again can extract_, Fi - Sc=0. The following equation remains,

sUM = sun +—ZZAFk- . (25)

It is still algebraically equivalent to Eq. (13).
Both approaches avoid cancellation and the preference may be given according tc
Riemann solver in use and the particular implementation.

3.4. The Error Introduced via the Flux-Evaluation

In the above discussion we have not yet answered the question of how to calculate
cell interface values in Eq. (18) or equivalently the junags in Eq. (25). It is not obvious
that these quantities can be calculated at allMbr~ 0 without introducing cancellation
errors since the correct sound speed and fluid velocity must be kept. Indeed, fiatat
[15, 5] showed that the Roe-solver is inconsistent with the zero Mach number limit in
original formulation. For that purpose, we propose a characteristic-based Riemann so
The method is very well suited for the calculation of low Mach number flows. It is ne
recommended in the presence of strong shocks. The method is very efficient since it emg
only a small number of essential operations. (We want to stress that the basic idea of
paper is not restricted to this method in peculiar and can be applied to other Riemann sol
too.)

The following description of the fluxes is given in terms of cell interface values at tir
t + At/2, rather than in the flux-difference form.

The Euler equations in one space dimension can be decoupled into three ordinary
ferential equations along distinct lines in time and space, called characteristics. TF
characteristics have the slopes

dx/dt =u—c=:Aq,
dx/dt = u=:Ap,

and
dx/dt =u+c=:2s.
The corresponding three ODESs along these characteristics read

dp—ocdu=0 (26)
dp—c?do =0 (27)
dp+ ocdu=0. (28)
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FIG. 3. Method of characteristics.

The situation is illustrated in Fig. 3. Assuming isentropic changes along each characteri
these ODEs could be integrated and the solution found by solving the resulting nonlin
system in entropy, velocity, and speed of sound. More easily the state atfhoem be
evaluated by approximating the characteristics with straight lines and freezing the val
oc andc? at their root values, denote&l B, andC. This approach is more general than the
former because no additional assumptions are made. For higher accuracy or if source
present on the right-hand sides an iteration scheme suggested by Courant and Friec
[4, p. 73] can be applied. Details of this linearization in the phase Spage o) are given

in [10, Abb. 2.5]. The result is a linears33-system

(Pp — Pa) +0aCalUup —Up) =0
(pp — Ps) —oBCe(Up —UR) =0 (29)
(pp — Pc) — C&(op — oc) = 0.

In matrix notation

Av+b=0 (30)
with
1 oaca O pp —Pa — 0aCala
A=|1 —oscg 0 |[; v=| Up |; b= | —ps + osCrUB
1 0 _C(2: op —Ppc + C(Z:Qc

v is the unknown state vector at the cell interface.

The very essence of this Riemann solver is to evaluate differences of the flow quanti
only along the characteristics. The sign of low Mach number flows is exactly the fact tl
the ratio of acoustic wave amplitudes to entropy wave amplitudes becomes vastly differ
Since the equations are decoupled form each other (according to the concept of a ¢
linear system) each equation represents a single wave with its own amplitude and v
speed. In this sense, none of the equations is stiff. Most other Riemann solvers mix
computation of the wave amplitudes along the different characteristics. Guillard and Vio
[5] show how this leads to inconsistencies of the Roe solver in the low Mach number lin
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Now we want to show that this system can indeed be solved accuratbly-ag. We
introduce reference values into the equations. Let us consider a case with acoustic w
interacting with a non-homogeneous density field o (X, y, z) with variations ofO(1).

As reference quantities we chos®’ = o(x, y, 2), p®f = p,, andu'’ = u,. Equation (29)
then becomes

(6pp — 8pa) +oaCa(dup —8up) =0

(6pp — 8pB) — @BCB(SUP — SUR) =0 (31)
(0pp — 8pc) — G2 ((e€ + d0p) — (06 +dcc)) = 0.

Please observe hag¢’ was chosen according to the upwind direction of the entropy wav
Again in matrix notation,

Asv+b=0 (32)
with
5pp ~ —8pA — QACA3UA
dv=|é8up |; b= | —dps + osCadUB
dop —8pc + cdoc

The matrixA is of course unaltered since the wave speeds have to be preserved.
Now we choose a nondimensionalisation with

00> Pos lo, to, aNdcy.

Additionally we impose

pO 1 COtO
2 =
Q Oco I (o]

The condition number of the matrik in the norm of Frobenius is

'\IAITOK(A) =3.5,

independent oM. The Frobenius norr - || is defined agl A||r := , /Zi,j afl

Thus Eq. (32) can be solved even for vanishiigNote that this result depends on the
reference values. If one would introduggas the dimensional reference for the velocity, the
condition would be?(M?). This is what is sometimes called “the pressure singularity” ir
the low Mach number limit. When scaling withy one seeks to blow up small perturbations
to O(1) and thereby scale the ambient pressure towards infinity. In the present appro
we allow small quantities to become small and exploit the fact that floating point numb
are actually scaled by the computer. This means that the present approach is limited b
exponent of the implemented model for real data. Commonly single precision arithme
provides an exponent af99 or bigger.

Still A andb have entries of the form

oc = ./yaep (33)
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and

¢ =yp/o, (34)

which may lead to cancellation & — 0. In other words, although Eg. (32) can be solvec
accurately, we still need to ensure that the obtained solution is not spoiled by the p
accuracy of the matrix entries themselves. We cannot extract a reference state here,

the proper speed of sound has to be maintained. Therefore we have to ask what happ
the speed of sound is not calculated properlyAlandb are perturbed by some quantity

AAandAb, how reliable will the solution of Eq. (32) be? How bigAs§v) in

(A+ AA)(v+ A(Sv)) + (b+ Ab) = 0? (35)

The errorA(Sv) may be estimated using standard textbooks on numerical analysis.
assume the worst case with full loss of all significant decimals of the perturbation to Egs. (
and (34). Following [9, p. 33], we find

TAGVI _ Kk (A) (IIAAII |IA~5I|)
@I — 1= AUAAAI/ITAD \ Al bl /-

As a compatible vector norm we choose thenorm. ForM — 0 we find

1 7 O 0 OM) 0
A=|1 -y 0 |; aA={0 oM o0
1 0 -y 0 0 ow

O(M) O(M?)
b= oM |; aAb= [ omMm?
O(M) O(M?)
3
IAALE ~ Y M2=+V3M
IAIE ~ Z% =
i,j=1

| AB]l2 ~ +/3M?2
[B]l2 ~ +/3M.
Thus

IAGWVII _ Kk (A)
Gl — 1-«x(Ag;M

(€M +¢,M) = ¢M.

(¢ indicates a constant of order one.) The relative error Wiﬂﬁ%% < O(M). This means
we are able to evaluate the fluxes, using Eq. (29), since the ex(éis, introduced by the
erroneous calculation of the speed of sound, are a fé@dtbt) smaller than the resulé{)

we want to obtain. We omitted in this paper the demonstration that the primitive variabl
needed in the above characteristic Riemann solver, can be determined from the consen
variables. This can be shown analogously [10, Sect. 17].
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If, for example,u > 0 the first component of the numerical flux-differenad=* =
F, — F. = Fp — Fp would now be calculated as

( ref

f
0bUs — 0pUp = (05 + 80b) (Uo + 8Up) — (06 + 80p ) (Us + SUp)

Uo(ey” = o) + (6}"0us = oG ove)

+ Uo(dop — dop) + (SopdUp — Sopdup). (36)

We have again grouped terms of the same magnitude to avoid cancellation. All terms a
mostO(M). This is not obvious for the first term (underlined) since we allow variations ¢
0" t0 beO(1). But uo(of" — o) is still at mostO(M) sinceO(u,) = M. Normally one
would chooseu, = 0. In this case the term vanishes.

Klein [7] showed that pressure variations of oré&M) and O(M?) are equally impor-
tant. The expression for the flux contains terms of both magnitudes. This leads obvious
a numerical limit. We can retain both, if presatthe same timeunless the)(M?) terms
become comparable to the order of the smallest floating point number representable ol
computer, or both are more thant@part from each other, withbeing the mantissa length.
This means for single precision, a limit bf =107 and double precision dfl = 10~#if
botheffects are present.

Please remember that conventional schemes los@ tM#)-contribution ag1/y M?)e
becomes comparable to unity. This means that a conventional scheme is always limite
afraction of the mantissaf the floating point model in use. Our scheme is limited by the
exponent for the case when only one effect is present. If both effects are important at
same time, it still can maktill use of the mantissa

4. CHOICE OF THE REFERENCE STATE U,

The choice of the reference statgdepends strongly on the type of problem in question
The simplest possibility is the computation of a perturbation to a constant state in space
time. ThenU, consists just of a few constants.

If one is interested in small perturbations to a steady state problem, this steady <
solution would be the ideal candidate. The simplest method is to calculate a steady ¢
solution with the available program itself using any suitable state as reference, maybe «
on a coarser grid. Then the solution of that run is taken as the new reference state.

If O(1) entropy changes are present in the flow field the reference field will be tin
dependentif we considertime intervals which are imposed by the fluid velocity. For exam
consider adensity jump @?(1) which is convected with a low Mach number flow. A suitable
choice of the reference conditions would be the initial profiles for the density and ene
density, andou), = 0 for the momentum density. In an explicit scheme, the jump will mov:
over one grid cell in approximately/M time steps. In the jump region the variabiewill
become comparable t8(1) during this time interval, whereas in the rest of the flow fielo
it will remain O(M). Thus a reasonable strategy would be to replace

Uy < (Up +8U)
U <0

wherevesU exceeds a certain threshold, a multiplévbf say, once every/M time steps.
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5. NUMERICAL RESULTS

Physical test case.We now want to describe a physical test case which we will us
in order to validate the improvements shown in Section 3, as well as to demonstrate
cancellation as shown in Section 2. The flow to be described was investigated by [1]
others with respect to the stability of the growing boundary layer. Thereby a solution to
simplified Navier—Stokes equations was found and a stability analysis performed on
basis. This solution may be found in [1; 10, Appendix B].

Consider a very long and thin tube filled with a little overpressure compared to t
ambient. Itis initially closed by a diaphragm. When the diaphragm is removed, an expan:s
wave runs into the tube expelling some gas. This is depicted in Fig. 4. In the inviscid ¢
the pressure would drop to ambient pressure across the expansion wave. In the preser
friction, viscous effects retard the motion, leading to a quasi stationary outflow.

In the plots to be shown, the longitudinal coordinate is given in terms-ok / (&, R2/ )
andp=[p/p, — 1]/(K|50/ Do) R being the radius of the tub&, the speed of sound at rest,
andv, the kinematic viscosityp, is the ambient pressure afig + Zﬁo the initial pressure
in the tube.

viscid

tnviscid

-
o

X

i £oF r F F o F oy or o F o F oy oF o F oy F oF oy oF o or oo
@dTIIIIJJI!IIIIIIIIIJI ramr e
s

L

»

d« L

FIG. 4. Sketch of the flow situation. In the upper diagram an expansion fan irxtheplane is shown. The
lower diagram shows the corresponding pressure distribution at the time level indicated by a the dashed line i
(x-t) plane. At the bottom, the tube is depicted. It has a diantktehich is small compared to it's length. The
membrane would have been at the left end.
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The flow is dominated by the time scale of the running expansion wave. Thus the cal
lation time is not increased when decreasing the Mach number. Please note that the ¢
Ax of the expansion wave is proportional to the Mach number. At very small Mach nut
bers the expansion fan cannot be resolved. It is rather a discontinuity which demands
conservative formulation of the governing PDESs in order to retain the physically corre
signal speed.

A numerical experiment proving the concepthe concept presented in Section 2 car
be investigated experimentally. The problem explained above was used as a test cast
assumed axial symmetry and thus the problem was reduced to two dimensions. For the w
propagating in radial directions the characteristic flux evaluation was slightly changec
include the effect amplitude changes for radial waves:

dr cv dr
alongazvﬂ:c, dp:l:gc(dv:l:vicT) =0 (37)

along% =v, dp—c?do=0. (38)

We start off with a flow field in primitive variable®(u, p), extracted from the results of
these calculations for a certain radius outside the boundary layer.

We want to investigate the result of a single momentum balance as occurring in every t
step. Therefore we look at the data as given at a certain time level and evaluate the pred
error growth, when performing the one single momentum balance. The momentum bale
in the axial direction of the tube is

8f = fr— fL = (0U® + P)r — (QU? + P)L. (39)

The cell interfaces in the longitudinal direction on a certain radius are of equal area
can be omitted in the present consideratigng. is the momentum flux due to convection
of mass ang contributes to the pressure force. The main error, as we know from Sectior
originates from first adding the small contributipu? to the large value op on either side
and subtracting both sums in a further step. Therefore we neglect the error introduce
calculatingou? and concentrate on the summation only. To find the theoretical express
of the error corresponding to Eq. (7) we write the flux balance with a relative error tel
(1+ ¢) for every summation:

Af = [[(eUu?)r+ Pr|(L+€1) — [(QUL + pL] (1 + €2)] (1 + €3). (40)

Af isthe numerical value, obtained in our attempt to calculate the exactdfal@®llecting
the exact valuéf from Eq. (39) yields to leading order

(oU?)r + Pr _ (oL + po 6

Af = 5f 1+ IY; €1 sf

+ €3]. (42)

Since theg; are only known by their magnitudes, the three leading error terms (the ter
containing ar¥ in (41)) are lumped together intee, and we define

Afy = 8T (1+ aey). (42)

The subscript iA f, indicates thatA f is evaluated with a certain leading ereor,. The
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leading term of theheoretical expressiofor the error is approximately given as

~ [(eU?)r + (@UAL] + [Pr + PL] .
[(eud)r — (udL] +[pr— Pl

(43)

€y

In order to figure out thactual errorin our numerical experiment, we additionally cal-
culate the same balance with a different numerical precision and with a different arithme

Afg = 8T (1+ Bep). (44)
If we then calculate
Af, oEy
—1) =ae, (11— - 45
(Afﬁ ) e ( Bep Pea + ) (49)
we are able to computes; as
Af,
aey ( - 1), (46)
Afg

providedBe, < ae1. To ensure the inequality, we evaluaté, with single,A fz with double
precision arithmetic in Fortran and with the terms rearranged by the method describe
this paper.

Equations (43) and (46) are compared to each other in Fig. 5. The expansion wave f
has reachea = 0.08. The fluid pushed out behind the wave front has a Mach number
aboutM = 0.01. The roundoff erroe in Eq. (43) was prescribed as=5- 108, Note, this
is the error introduced in the evaluation of the momentum flux balance every single ti
step. As shown in Section 3, there are several sources, augmenting the numerical erro
top of that, they are accumulated in numerous time steps. The failure of a finite-volu
code, calculating with single precision the flow case mentioned above, is shown in Fig
The error shows up dramatically in entropy, density, and temperature. One can obser
already atM = 0.1. The error in pressure is shown in Fig. 7. It does not look as dramatic
the present Mach number as the entropy, and might be overlooked in more complicated

theor. error ——
exp. error == J

0.1

0.01 |

err [-]

0.001

0.0001 F

le-05

1e-06 L i L L L " L L
0 002 004 006 008 0.1 0.12 0.14 0.16 0.18
x[-]

FIG.5. Comparison of the error Egs. (43) and (48)~=0.01, 400x 8 cells.
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FIG.6. Entropy along the axis of the tube. Comparison of two calculations, performed with single and dou
precision arithmetic, 408 8 cells,M = 0.01.

situations, where the aid of an analytical solution is not available. At lower Mach numb
the solution becomes useless.

Computation with very low Mach numbersTo demonstrate the desired capability of
calculating flows at very low Mach numbers without harm from cancellation errors, v
show in Fig. 8 a flow aM = 10~*%, using single precision arithmetic (seven digits). In this
case we chose the reference state to be the ambient condi§ians= 0, andp,. They were
prescribed constant in space and time. To contrast this result, we show ¢neHigw-field,
calculated with the same numerical precision, but with an unaltered cdde=at0°.

6. CONCLUSION AND REMARKS

We have shown that cancellation errors play a significant role in calculating low Ma
number flows. In the past, several authors treated this problem, but no attempts were r
to precisely show the role of the computer accuracy and numerical cancellation for
problem. This mechanism was demonstrated and identified in several important steps w
a common finite volume code: time integration, flux balance, and flux evaluation.

1
09 | calculation ° |
: analytical solution -----

08
07t
06
05
04
03 r
02
0.1

[

0 ‘ L I L I
0 0.02 004 006 008 0.1 0.2 0.14 0.16 0.18
x [

FIG. 7. Failure of a conventional scheme, 49@® cells,M =0.01.
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FIG. 8. Calculation atM =101, 400x 8 cells.

Applying proper numerics, the cancellation problem in calculating low Mach numb
flows can be cured. This was shown in an example, calculating a fldMv=atl0~%, using
a single precision Fortran on a common workstation. The method used is still conserva
and capable of calculating high Mach number floWke basic idea is to introduce a

2
°
L5t s .
° °
°
o om
1+ . 0T 4
_ e o eoCmaSude
T o o o
o @000 o e 0009 o
0.5 + L2 S S VTR T
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0.5 Fo ]
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0 002 004 006 008 01 0.2 0.14 0.16 0.18
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FIG.9. Failure of an unaltered code bt =105, 400x 8 cells.
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reference state into the governing equation and effectively calculate perturbations to 1
state, without neglecting any terms of the full original equatidree effort for doing so in
an existing program is moderate.
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