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In calculating low Mach number flows one faces the stiffness problem in two
different facets:

• the applicable time steps become very small
• the constants of the cancellation errors become very large(1/γM2).

Usually the first point receives attention. Here we want toconcentrate on the can-
cellation problem only. To our knowledge there is no detailed investigation of this
problem in the related literature. In primitive variable formulations the problem can
be solved by using the pressure coefficient instead of the pressure and a similar vari-
able for the temperature or the internal energy. In conservative variable formulations
this is thought not to be possible and therefore is sacrificed. We are able to show that
a local reference state can also be introduced into a conservative scheme, if carefully
applied to all quantities and applied to all constituent parts of the program. A detailed
error analysis is given for all these parts. Finally, we show that we can perform a very
low Mach number calculation atM = 10−11 with a seven digits arithmetic only and
still maintain the set of conservative variables. The governing equations are unaltered
and the method depends neither on the time integration scheme nor the specific dis-
cretization. The method should be used in connection with the standard strategies like
preconditioning, multigrid, or an (semi-)implicit method if acceleration is desired.

c© 1999 Academic Press

1. INTRODUCTION

In recent years the interest of many researchers has focused on the calculation of com-
pressible low Mach number flows. Initially, the reason for doing so was the interest to use
commercial codes in the incompressible limit [16], thereby closing a gap in the Mach num-
ber range, accessible by incompressible and compressible formulations. Since the time step
for integrating the Euler equations is restricted by the fast acoustic waves, but the solution
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sought is usually also depending on the spreading of entropy waves, the number of time
steps needed grows withO(1/M). Thus the point which primarily attracted attention was
the stiffness of the equations, resulting in a large number of required time steps. We observe
that the interest in compressible low Mach number flows has shifted to the case where
density variations (e.g., created by combustion) are not vanishing forM→ 0.

Many proposals have been made to treat low Mach number flows. A good and extensive
review can be found in an article by R. Klein [7]. Not considered in this review is the branch
of methods trying to find a steady state solution by preconditioning the equations, partly in
connection with multigrid methods as used by van Leeret al. [14] or implicit methods as
in [3] by Chen and Pletcher.

Klein [7] requires that large amplitude density variations should be allowed, all waves
should be promoted by their correct signal speeds, appropriate pressure variables for the
thermodynamic and acoustic fluctuation range should be considered, and long wave acous-
tics with pressure amplitudesδp/p∞ = O(M) should be accurately described.

In previous work we focused on the problem of the small time steps. Thereby we observed
that even if the convergence can be accelerated substantially by preconditioning or multigrid
methods, the accuracy severely deteriorates at very low Mach numbers. A multigrid scheme
converges with a sufficient rate but we were only able to reduce the residual a few decades,
depending on the Mach number.

Related observations or remarks are given in literature, see, for example, [7, Sect. 3.1;
16, Concluding Remarks; 5; 15]. Some of these authors are aware of cancellation as the
source of the problem but to our knowlege no analysis of the numerical situation is reported
in the literature.

Therefore this article entirely focuses on thecancellation of the numerical solutionusing
modern finite volume schemes for the computation of low Mach number flows.

Numerical analysis is well aware of this process since in the pioneering days of compu-
tational sciences not even 6 digits were available to the scientist. The simple remedy is to
introduce reference quantities into the equations and perform the calculation only on the
fluctuations. A familiar variable of this type is the pressure coefficientCp = (po− p)/%ou2

o.
As shown in Section 2 it is not sufficient to introduce a reference quantity in the momentum
equation, but also in the energy equation and, if density changes ofO(1) are present, in the
continuity equation as well.

Although the concept sounds simple in principle, application to the equations of com-
pressible fluid flow is not straightforward.

Several attempts in that direction are reported in the literature. Brileyet al.[2] introduced
in 1983 a pressure coefficient as an independent variable such that the Euler equations
for constant enthalpy reduce to the incompressible Euler equations in the incompressible
limit:

p̃ = p

%ou2
o

− 1

γM2
o

.

This eliminated parts of the problem since cancellation errors in formulating the pressure
flux can be avoided, as well as errors in the time integration scheme. However, they gave no
error analysis and failed to see that the contribution of the kinetic energy to the total energy
also gives rise to cancellation errors. This was observed by Hafez and Soliman [6] in 1991
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and consequently they also introduced a reference temperature,

T̃ = cpT

u2
o

− 1

(γ − 1)M2
o

.

Turkelet al.[13] reported a similar approach to that of Hafezet al.in 1993 but in connection
with preconditioning methods. In the same year, Shuenet al.[11] used a pressure coefficient
as Briley did, thus also omitting referencing the kinetic energy.

However, all methods need new independent variables and cannot keep the set of con-
servative variables (%, %u, %e) as independent variables which is important when one has
all Mach number codes in mind and wants to ensure the correct shock speeds.

These reference formulations have not yet entered formulations using the conservative
variables although this would be highly desirable. The situation is further complicated by
the fact that the speed of sound is also subjected to fluctuations. Thus it is even questionable
whether a Riemann problem can be solved at all, without introducing cancellation errors
at low Mach numbers. Guillard and Viozat [5] show theoretically the failure of the popular
Roe scheme by means of low Mach number asymptotics.

The major aim of this paper is to carry the referencing idea further and to employ it rig-
orously in a conservative variable formulation. The proposed idea can be useful in codes
designed for all Mach number flow. Since only the accuracy of the computation is addressed,
one might want to use it in connection with acceleration techniques as described in the liter-
ature. The method can also be used to accurately compute acoustic problems as for example
in noise reduction problems in the automobile industry. In these applications very small
amplitudes have to be resolved, frequently on an almost incompressible background flow.
In this case the proposed idea may be used to apply a conventional compressible flow solver
to this kind of problem with moderate effort. (Apart from low Mach number flows a similar
situation is encountered in relativistic flows where the rest energymc2

o is tremendously high
and plays a similar role as the high internal energy in the acoustic problems considered
here. Also, in modelling turbulence with a k-ω model,ω takes a finite, but very high value
at walls. In this case the cancellation process buries flux differences from the Euler part of
the equations under the large values ofω.)

The present paper is organised as follows. First we demonstrate the mechanism of can-
cellation in a simple example: A pressure difference between two adjacent locations on
a computational grid. Then we identify all occurrences of cancellation within an explicit
finite volume code and show how the problem can be avoided by calculating the flow as a
perturbation to a reference state. In Section 4 we explain how the reference state should be
chosen. In the last section we validate the approach by comparing it with a two-dimensional
physical test case.

2. CANCELLATION OCCURRING IN CALCULATING LOW MACH NUMBER FLOWS

In this section we want to recall the concept of numerical cancellation, shown in el-
ementary books from numerical analysis [12]. We want to illustrate the occurrence of
cancellation within the CFD-framework using a pressure difference between two grid lo-
cations in a smooth flow field. It is worth mentioning that this situation not only occurs in
the momentum equation but also affects the energy equation.
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The pressure in the left grid location iŝpL , in the right it isp̂R. Suppose, both are evaluated
using an equation of state from conservative quantities as

p̂ = (γ − 1)

(
%̂e− (%̂u)2

2%̂

)
. (1)

Herein%̂ is the density,̂%e is the total energy per unit volumeγ the ratio of the specific heats,
and%̂u the momentum per unit volume. To characterize the order of magnitude of each term
we introduce nondimensional quantitiesp = p̂/γ %̂oĉ2

o, %e = %̂eγ /%̂oĉ2
o, % = %̂/%̂o, and

%u = %̂u/%̂oûo. The values ˆ%o, ûo, andĉo are chosen to be characteristic flow quantities.
Also introducing a reference Mach numberMo := ûo/ĉo, Eq. (1) becomes

p = (γ − 1)

(
%e− γM2

o

(%u)2

2%

)
. (2)

Now all the variables have the magnitudeO(1), so we can readily see the influence of the
Mach number, controlling the relative magnitude of the kinetic energy term. It may become
arbitrarily small, provided the Mach number is small enough. With this in mind, we write

pL = po and pR = po + δp. (3)

with po = O(1) andδp = O(M2
o). Thus, the pressure difference becomes

pR− pL = (po + δp)− po. (4)

Due to the limited number of digits available on a computer, a numerical calculation can
only be performed with a limited relative accuracy. For example, evaluation of the pressure
pR = po + δp yields the numerical result

(po + δp)(1+ ε1).

Every arithmetic operation introduces a relative error, here characterized byε1. ε1 is not a
constant and depends on the floating point representation used on the specific computer as
well as on the arguments of the specific operation. It may be estimated as|ε1| ≤5 · 10−t when
t decimals are available for representation of the mantissa. It is assumed that no exponent
overflow occurs. This is a reasonable assumption. This error is called theroundoff error
in the literature. It is unavoidable and has to be distinguished from thecancellation error
which occurs as an accumulation effect of roundoff errors. Cancellationcan be avoidedto
a certain extent by algebraically manipulating the formulas. This is demonstrated below.
Introducing a relative error in every operation, Eq. (4) yields

1p = ((po + δp)(1+ ε1)− po)(1+ ε2) (5)

for the computed pressure difference. Extracting the known exact resultδp in Eq. (5) we find

1p = δp
(

1+ po + δp
δp

ε1+ ε2+O(ε1ε2)

)
, (6)

ε2 being the error introduced in the second operation. The leading error term is

po + δp
δp

ε1 ≈ O
(

1

M2
o

)
ε1. (7)
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If this term is comparable to one, the relative error dominates the evaluation. We observe
that the relative error is scaled by 1/M2

o which explains the cancellation mechanism at small
Mach numbers. Sinceδp is the pressure difference associated with the distance between
two grid points, we also expect an error dependency like 1/1x: Refining the mesh will lead
to even worse results.

We give a numerical example. Calculating a flow atMo= 10−3 with single precision
arithmetic, i.e.,|ε1| ≤5 · 10−7, will not preserve a single digit of the pressure difference.
The calculation is already harmed at considerably higher Mach numbers as we will show
in Figs. 6 and 7.

We want to stress that this does not affect the momentum equation only. The nondimen-
sional expression for the total energy density is given by

%e= %(ε + γM2
ou2
)
, (8)

whereε= ε̂γ /c2
o is the nondimensional internal energy and isO(1) by choice of the refer-

ence quantity. We can observe the same situation as in Eq. (2), so that the energy equation
will be affected by cancellation as well. This is also true if one uses primitive formulations
with the temperature, the speed of sound, or similar quantities as the principal variable.

The situation for the continuity equation is slightly better: Gibbs fundamental equation
dh= T ds+ dp/% can, by use of the equation of state, be written as

dp− c2/γ d% = p ds. (9)

Heres in nondimensionalized by the specific heat at constant volume. We can see that
density changes have the same order as the pressure changes, as long as noO(1) entropy
changes are present. If there are, referencing the continuity equation is necessary too.

3. HOW TO AVOID CANCELLATION

From Eq. (4) it is apparent how to avoid cancellation. We can rearrange the evaluation
of Eq. (4) as

pR− pL = (po + δp)− po = (po − po)+ δp. (10)

The numerical result now yields

1p = ((po − po)(1− ε1)+ δp)(1+ ε2)

= δp
(

1+ po − po

δp
ε1+ po − po

δp
ε2+ ε2+ po − po

δp
ε1ε2

)
= δp(1+ ε2). (11)

Thus the numerical error is as small as the roundoff error. This is the best we can hope
for. Please note that this result does not depend on (po − po) dropping out. Ifpo would be
different on both sides,poR and poL say, the resulting coefficients(poR− poL)/δp on the
second line of Eq. (11) would still be of magnitudeO(1) instead ofO(1/M2)

In a common finite-volume code for compressible flows are three operations leading to
cancellation:
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• the time integration
• the determination of the flux-difference
• the determination of the fluxes.

In the following sections, we first explain the concept and then show how to avoid cancel-
lation for each item. Please observe that the solved equations remain unaltered.

3.1. The Finite-Volume Setting

Let the conservative law be denoted as

d

dt

∫
Ä

u dω +
∫
∂Ä

f (u) ds= 0. (12)

u= (%, %ui , %e)T is the vector of conserved quantities and the flux functionf (u) has the
components%uk, pδik + %ui uk − τik and%uk(e+ p/%) − ui τik − λ(∂T/∂xk) in tensor
notation, using the common symbols. An explicit finite volume approximation reads

Un+1
i = Un

i −
1t

Äi

∑
Fn(U ) · S. (13)

Readers not familiar with these concepts will find them, e.g., in the book by LeVeque [8].
Un

i is the approximation to the conserved quantityu within the celli at the time leveln, Ä
is the volume of the cell,F(U ) the numerical flux function across each interface, andS
a vector with the direction of the outward normal. Its length is the absolute value of the
surface area. The sum extends over all sides of the control volume.

The basic idea of this paper is to introduce a suitable reference stateUo and a perturbation
δU to Uo into the governing equations.

3.2. The Error Introduced via the Time Integration

Inserting the perturbationδU to the reference stateUo into Eq. (13) gives

(Uo + δU )n+1
i = (Uo + δU )ni −

1t

Äi

∑
Fn(Uo + δU ) · S. (14)

If Uo is well chosen (cf. Section 4)δU is small. In the following a numerical evaluation is
introduced which takes advantage of this. We restrict our considerations to a reference state
Uo = Uo(x, y, z) which is constant within time scales imposed by the acoustic waves. It
might be readjusted according to the slow entropy waves. We subtract the reference state
from both sides of Eq. (14):

δUn+1
i = δUn

i −
1t

Äi

∑
Fn(Uo + δU ) · S. (15)

This already results in a numerically better scheme. To estimate the improvement, we look at
the magnitudes of the different terms in Eqs. (14) and (15). Suitably scaledUo=O(1), δU =
O (δ), and1t

Ä

∑
F · S= O(δ). Herein,δ is small and decreases at least withM , for low

Mach number flows. Thus all summands in Eq. (15) are of the same order, whereas in
the original equation, cancellation occurs. The last formulation can be implemented in
an existing code with little effort. We found the numerics of the resulting scheme to be
substantially improved at Mach numbers as high asM = 0.01.
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3.3. The Error Introduced via the Flux-Difference

Next, the error introduced via the flux-difference has to be treated. Although we expect
1t
Ä

∑
F ·S to be small asO(δ) it usually contains differences of large numbers. We present

two approaches which avoid this situation, one calculating the flux-difference1 f directly,
and the other using the wave-propagation idea.

Calculating the flux-balance directly.First, we want to explain the concept by an ex-
ample in one space dimension on a uniform grid. The continuity equation in this case
becomes

%n+1 = %n − 1t

1x
(%RuR− %LuL). (16)

(.)L and(.)R denote states at the left- and right-hand cell-interface. They have to be provided
by a Riemann solver. Introducing a perturbation to a reference state%o, uo we find

(%o+ δ%)n+1 = (%o+ δ%)n − 1t

1x
((%o+ δ%)R(uo+ δu)R− (%o+ δ%)L(uo+ δu)L). (17)

After rearrangement and subtraction of%o from both sides of Eq. (17)

δ%n+1 = δ%n − 1t

1x

((%ouo)R− (%ouo)L)︸ ︷︷ ︸
1Fo

+ ((δ%uo)R− (δ%uo)L)+ ((%oδu)R− (%oδu)L)+ ((δ%δu)R− (δ%δu)L)︸ ︷︷ ︸
1(δF)

 .
(18)

We can identify mixed products of the reference state and the perturbations. Here we
have grouped terms together that we expect to be of equal magnitudes. Thus we subtract
quantities of magnitudeO(1),O(δ), andO(δ2) separately, thus avoiding cancellation. The
example above is one-dimensional but the same procedure can be applied independent of
this constraint. Generally, the flux-balance of Eq. (15) is split into∑

F(Uo + δU ) · S=
∑

Fo(Uo + δU ) · S+
∑

δF(Uo + δU ) · S (19)

as indicated in Eq. (18). Equation (15) becomes

δUn+1
i = δUn

i +
1t

Äi

∑
Fo · S+ 1t

Äi

∑
δFo · S. (20)

The sum
∑

Fo · S is the finite volume expression for the integral
∫
∂Ä

fo dS. If the back-
ground flux yields∂U

∂t = 0, this part will drop out.
Please note that Eq. (20) is not determined uniquely. It gives only the final form of the

integration scheme. Also note that the states at the left- and right-hand cell-interfaces in
Eq. (18) are undetermined up to now.
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FIG. 1. Evolution of a Riemann problem.

Wave propagation. Reference [8] is an alternative approach for calculating the flux
differences. The bulk contribution to the flux flowing homogeneouslythroughthe control
volume drops out in a even more natural fashion. Consider a Riemann problem as depicted
in Fig. 1 as it is assumed at each cell interface.

In order to find a suitable formulation for flux-difference splittings, we rewrite the flux
difference fb − fa across an evolving Riemann problem as

fb − fa = ( fb − fd)+ ( fd − fc)+ ( fc − fa) =
∑

1 f + +
∑

1 f −. (21)

1 f + resp.1 f − denotes the flux-differences which are associated with right- or left-running
waves.a andb are the initial left and the right states. Solving the Riemann problem one
finds the intermediate statesc andd. We always look for the state on the time axis, which
may lie in any of the flow regionsa, c, d, or b, depending on the flow direction and Mach
number.

Now consider Fig. 2. From the viewpoint of a particular celli , the fluxes at the left and
right cell interfaces may be expressed as

fi−1/2 = fi −
∑

1 f +L (22)

fi+1/2 = fi +
∑

1 f −R . (23)

FIG. 2. Riemann problems at different sides of a control volume.
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The indicesL andR indicate a left and right interface of the cell. The integration may thus
be expressed as

δUn+1
i = δUn

i +
1t

Äi

∑
k

(
Fi +

∑
1F±

)
k
· Sk. (24)

k indicates all cell interfaces, and1F± is constructed in accordance to Eqs. (22) and (23)
with an exact or approximate Riemann solver. Since all expressions are based on celli , we
again can extract

∑
k Fi · Sk= 0. The following equation remains,

δUn+1
i = δUn

i +
1t

Äi

∑
k

∑
1F±k · Sk. (25)

It is still algebraically equivalent to Eq. (13).
Both approaches avoid cancellation and the preference may be given according to the

Riemann solver in use and the particular implementation.

3.4. The Error Introduced via the Flux-Evaluation

In the above discussion we have not yet answered the question of how to calculate the
cell interface values in Eq. (18) or equivalently the jumps1F in Eq. (25). It is not obvious
that these quantities can be calculated at all forM→ 0 without introducing cancellation
errors since the correct sound speed and fluid velocity must be kept. Indeed, Viozatet al.
[15, 5] showed that the Roe-solver is inconsistent with the zero Mach number limit in its
original formulation. For that purpose, we propose a characteristic-based Riemann solver.
The method is very well suited for the calculation of low Mach number flows. It is not
recommended in the presence of strong shocks. The method is very efficient since it employs
only a small number of essential operations. (We want to stress that the basic idea of this
paper is not restricted to this method in peculiar and can be applied to other Riemann solvers
too.)

The following description of the fluxes is given in terms of cell interface values at time
t +1t/2, rather than in the flux-difference form.

The Euler equations in one space dimension can be decoupled into three ordinary dif-
ferential equations along distinct lines in time and space, called characteristics. These
characteristics have the slopes

dx/dt = u− c=: λ1,

dx/dt = u=: λ2,

and

dx/dt = u+ c=: λ3.

The corresponding three ODEs along these characteristics read

dp− %c du= 0 (26)

dp− c2 d% = 0 (27)

dp+ %c du= 0. (28)
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FIG. 3. Method of characteristics.

The situation is illustrated in Fig. 3. Assuming isentropic changes along each characteristic,
these ODEs could be integrated and the solution found by solving the resulting nonlinear
system in entropy, velocity, and speed of sound. More easily the state at pointP can be
evaluated by approximating the characteristics with straight lines and freezing the values
%c andc2 at their root values, denotedA, B, andC. This approach is more general than the
former because no additional assumptions are made. For higher accuracy or if sources are
present on the right-hand sides an iteration scheme suggested by Courant and Friedrichs
[4, p. 73] can be applied. Details of this linearization in the phase space(u, p, %) are given
in [10, Abb. 2.5]. The result is a linear 3× 3-system

(pP − pA)+ %AcA(uP − uA) = 0

(pP − pB)− %BcB(uP − uB) = 0 (29)

(pP − pC)− c2
C(%P − %C) = 0.

In matrix notation

Av + b = 0 (30)

with

A=

1 %AcA 0
1 −%BcB 0

1 0 −c2
C

 ; v=
 pP

uP

%P

 ; b=

−pA − %AcAuA

−pB + %BcBuB

−pC + c2
C%C

 .
v is the unknown state vector at the cell interface.

The very essence of this Riemann solver is to evaluate differences of the flow quantities
only along the characteristics. The sign of low Mach number flows is exactly the fact that
the ratio of acoustic wave amplitudes to entropy wave amplitudes becomes vastly different.
Since the equations are decoupled form each other (according to the concept of a quasi
linear system) each equation represents a single wave with its own amplitude and wave
speed. In this sense, none of the equations is stiff. Most other Riemann solvers mix the
computation of the wave amplitudes along the different characteristics. Guillard and Viozat
[5] show how this leads to inconsistencies of the Roe solver in the low Mach number limit.
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Now we want to show that this system can indeed be solved accurately asM→ 0. We
introduce reference values into the equations. Let us consider a case with acoustic waves
interacting with a non-homogeneous density field%= %(x, y, z) with variations ofO(1).
As reference quantities we chose%ref= %(x, y, z), pref= po, anduref= uo. Equation (29)
then becomes

(δpP − δpA)+ %AcA(δuP − δuA) = 0

(δpP − δpB)− %BcB(δuP − δuB) = 0 (31)

(δpP − δpC)− c2
C

((
%

ref
C + δ%P

)− (%ref
C + δ%C

)) = 0.

Please observe how%ref was chosen according to the upwind direction of the entropy wave.
Again in matrix notation,

Aδv + b̃ = 0 (32)

with

δv =
 δpP

δuP

δ%P

 ; b̃ =

−δpA − %AcAδuA

−δpB + %BcBδuB

−δpC + c2
Cδ%C

 .
The matrixA is of course unaltered since the wave speeds have to be preserved.

Now we choose a nondimensionalisation with

%o, po, lo, to, andco.

Additionally we impose

po

%oc2
o

= 1 and
coto
lo
= 1.

The condition number of the matrixA in the norm of Frobenius is

lim
M→0

κ(A)
.= 3.5,

independent ofM . The Frobenius norm‖ · ‖F is defined as‖A‖F :=
√∑

i, j a2
i j .

Thus Eq. (32) can be solved even for vanishingM . Note that this result depends on the
reference values. If one would introduceuo as the dimensional reference for the velocity, the
condition would beO(M2). This is what is sometimes called “the pressure singularity” in
the low Mach number limit. When scaling withuo one seeks to blow up small perturbations
to O(1) and thereby scale the ambient pressure towards infinity. In the present approach,
we allow small quantities to become small and exploit the fact that floating point numbers
are actually scaled by the computer. This means that the present approach is limited by the
exponent of the implemented model for real data. Commonly single precision arithmetic
provides an exponent of±99 or bigger.

Still A andb̃ have entries of the form

%c = √γ %p (33)
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and

c2 = γ p/%, (34)

which may lead to cancellation atM→ 0. In other words, although Eq. (32) can be solved
accurately, we still need to ensure that the obtained solution is not spoiled by the poor
accuracy of the matrix entries themselves. We cannot extract a reference state here, since
the proper speed of sound has to be maintained. Therefore we have to ask what happens if
the speed of sound is not calculated properly. IfA andb̃ are perturbed by some quantity
1A and1b̃, how reliable will the solution of Eq. (32) be? How big is1(δv) in

(A+1A)(v +1(δv))+ (b̃+1b̃) = 0? (35)

The error1(δv) may be estimated using standard textbooks on numerical analysis. We
assume the worst case with full loss of all significant decimals of the perturbation to Eqs. (33)
and (34). Following [9, p. 33], we find

‖1(δv)‖
‖(δv)‖ ≤

κ(A)

1− κ(A)(‖1A‖/‖A‖)
(‖1A‖
‖A‖ +

‖1b̃‖
‖b̃‖

)
.

As a compatible vector norm we choose theL2 norm. ForM→ 0 we find

A=
1

√
γ 0

1 −√γ 0
1 0 −γ

 ; 1A=
0 O(M) 0

0 O(M) 0
0 0 O(M)



b̃=
O(M)O(M)
O(M)

 ; 1b̃=
O(M2)

O(M2)

O(M2)



‖1A‖F ∼

√
3∑

M2 =
√

3M

‖A‖F ∼
√√√√ 3∑

i, j=1

a2
i j

M→0.= 2.8

‖1b̃‖2 ∼
√

3M2

‖b̃‖2 ∼
√

3M.

Thus

‖1(δv)‖
‖(δv)‖ ≤

κ(A)

1− κ(A)c/1M
(c/1M + c/2M) = c/M.

(c/ indicates a constant of order one.) The relative error will be‖1(δv)‖
‖(δv)‖ ≤ O(M). This means

we are able to evaluate the fluxes, using Eq. (29), since the errors1(δv), introduced by the
erroneous calculation of the speed of sound, are a factorO(M) smaller than the result (δv)
we want to obtain. We omitted in this paper the demonstration that the primitive variables,
needed in the above characteristic Riemann solver, can be determined from the conservative
variables. This can be shown analogously [10, Sect. 17].
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If, for example,u> 0 the first component of the numerical flux-difference1F+ =
Fb− Fc= Fb− FP would now be calculated as

%bub − %PuP =
(
%

ref
b + δ%b

)
(uo + δub)−

(
%

ref
C + δ%P

)
(uo + δuP)

= uo
(
%

ref
b − %ref

C

)+ (%ref
b δub − %ref

C δuP
)

+ uo(δ%b − δ%P)+ (δ%bδub − δ%PδuP). (36)

We have again grouped terms of the same magnitude to avoid cancellation. All terms are at
mostO(M). This is not obvious for the first term (underlined) since we allow variations of
%ref to beO(1). But uo(%

ref
b − %ref

C ) is still at mostO(M) sinceO(uo)=M . Normally one
would chooseuo= 0. In this case the term vanishes.

Klein [7] showed that pressure variations of orderO(M) and O(M2) are equally impor-
tant. The expression for the flux contains terms of both magnitudes. This leads obviously to
a numerical limit. We can retain both, if presentat the same time, unless theO(M2) terms
become comparable to the order of the smallest floating point number representable on the
computer, or both are more than 10−t apart from each other, witht being the mantissa length.
This means for single precision, a limit ofM = 10−7 and double precision ofM = 10−14 if
botheffects are present.

Please remember that conventional schemes lose theO(M2)-contribution as(1/γM2)ε

becomes comparable to unity. This means that a conventional scheme is always limited by
a fraction of the mantissaof the floating point model in use. Our scheme is limited by the
exponent for the case when only one effect is present. If both effects are important at the
same time, it still can makefull use of the mantissa.

4. CHOICE OF THE REFERENCE STATE Uo

The choice of the reference stateUo depends strongly on the type of problem in question.
The simplest possibility is the computation of a perturbation to a constant state in space and
time. Then,Uo consists just of a few constants.

If one is interested in small perturbations to a steady state problem, this steady state
solution would be the ideal candidate. The simplest method is to calculate a steady state
solution with the available program itself using any suitable state as reference, maybe even
on a coarser grid. Then the solution of that run is taken as the new reference state.

If O(1) entropy changes are present in the flow field the reference field will be time
dependent if we consider time intervals which are imposed by the fluid velocity. For example,
consider a density jump ofO(1)which is convected with a low Mach number flow. A suitable
choice of the reference conditions would be the initial profiles for the density and energy
density, and(%u)o= 0 for the momentum density. In an explicit scheme, the jump will move
over one grid cell in approximately 1/M time steps. In the jump region the variableδ% will
become comparable toO(1) during this time interval, whereas in the rest of the flow field
it will remainO(M). Thus a reasonable strategy would be to replace

Uo← (Uo + δU )
δU ← 0

whereverδU exceeds a certain threshold, a multiple ofM , say, once every 1/M time steps.
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5. NUMERICAL RESULTS

Physical test case.We now want to describe a physical test case which we will use
in order to validate the improvements shown in Section 3, as well as to demonstrate the
cancellation as shown in Section 2. The flow to be described was investigated by [1] and
others with respect to the stability of the growing boundary layer. Thereby a solution to the
simplified Navier–Stokes equations was found and a stability analysis performed on this
basis. This solution may be found in [1; 10, Appendix B].

Consider a very long and thin tube filled with a little overpressure compared to the
ambient. It is initially closed by a diaphragm. When the diaphragm is removed, an expansion
wave runs into the tube expelling some gas. This is depicted in Fig. 4. In the inviscid case
the pressure would drop to ambient pressure across the expansion wave. In the presence of
friction, viscous effects retard the motion, leading to a quasi stationary outflow.

In the plots to be shown, the longitudinal coordinate is given in terms ofx= x̂/(ĉoR̂2/ν̂o)

andp= [ p̂/ p̂o−1]/(1̂po/ p̂o), R̂ being the radius of the tube,ĉo the speed of sound at rest,
andν̂o the kinematic viscosity.̂po is the ambient pressure andp̂o+ 1̂po the initial pressure
in the tube.

FIG. 4. Sketch of the flow situation. In the upper diagram an expansion fan in the (x-t) plane is shown. The
lower diagram shows the corresponding pressure distribution at the time level indicated by a the dashed line in the
(x-t) plane. At the bottom, the tube is depicted. It has a diameterd which is small compared to it’s lengthL. The
membrane would have been at the left end.
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The flow is dominated by the time scale of the running expansion wave. Thus the calcu-
lation time is not increased when decreasing the Mach number. Please note that the depth
1x of the expansion wave is proportional to the Mach number. At very small Mach num-
bers the expansion fan cannot be resolved. It is rather a discontinuity which demands the
conservative formulation of the governing PDEs in order to retain the physically correct
signal speed.

A numerical experiment proving the concept.The concept presented in Section 2 can
be investigated experimentally. The problem explained above was used as a test case. We
assumed axial symmetry and thus the problem was reduced to two dimensions. For the waves
propagating in radial directions the characteristic flux evaluation was slightly changed to
include the effect amplitude changes for radial waves:

along
dr

dt
= v ± c, dp± %c

(
dv ± cv

v ± c

dr

r

)
= 0 (37)

along
dr

dt
= v, dp− c2 d% = 0. (38)

We start off with a flow field in primitive variables (%, u, p), extracted from the results of
these calculations for a certain radius outside the boundary layer.

We want to investigate the result of a single momentum balance as occurring in every time
step. Therefore we look at the data as given at a certain time level and evaluate the predicted
error growth, when performing the one single momentum balance. The momentum balance
in the axial direction of the tube is

δ f = fR− fL = (%u2+ p)R− (%u2+ p)L . (39)

The cell interfaces in the longitudinal direction on a certain radius are of equal area and
can be omitted in the present considerations.%u2 is the momentum flux due to convection
of mass andp contributes to the pressure force. The main error, as we know from Section 2,
originates from first adding the small contribution%u2 to the large value ofp on either side
and subtracting both sums in a further step. Therefore we neglect the error introduced in
calculating%u2 and concentrate on the summation only. To find the theoretical expression
of the error corresponding to Eq. (7) we write the flux balance with a relative error term
(1+ εi ) for every summation:

1 f = [[(%u2)R+ pR
]
(1+ ε1)−

[
(%u2)L + pL

]
(1+ ε2)

]
(1+ ε3). (40)

1 f is the numerical value, obtained in our attempt to calculate the exact valueδ f . Collecting
the exact valueδ f from Eq. (39) yields to leading order

1 f = δ f

[
1+ (%u2)R+ pR

δ f
ε1− (%u2)L + pL

δ f
ε2+ ε3

]
. (41)

Since theεi are only known by their magnitudes, the three leading error terms (the terms
containing anε in (41)) are lumped together intoαεα and we define

1 fα = δ f (1+ αεα). (42)

The subscript in1 fα indicates that1 f is evaluated with a certain leading errorαεα. The
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leading term of thetheoretical expressionfor the error is approximately given as

αεα ≈
[
(%u2)R+ (%u2)L

]+ [ pR+ pL ][
(%u2)R− (%u2)L

]+ [ pR− pL ]
ε. (43)

In order to figure out theactual error in our numerical experiment, we additionally cal-
culate the same balance with a different numerical precision and with a different arithmetic:

1 fβ = δ f (1+ βεβ). (44)

If we then calculate (
1 fα
1 fβ
− 1

)
= αεα

(
1− αεα

βεβ
− βεβ + · · ·

)
(45)

we are able to computeαε1 as

αεα ≈
(
1 fα
1 fβ
− 1

)
, (46)

providedβε2¿αε1. To ensure the inequality, we evaluate1 fα with single,1 fβ with double
precision arithmetic in Fortran and with the terms rearranged by the method described in
this paper.

Equations (43) and (46) are compared to each other in Fig. 5. The expansion wave front
has reachedx= 0.08. The fluid pushed out behind the wave front has a Mach number of
aboutM = 0.01. The roundoff errorε in Eq. (43) was prescribed asε= 5 · 10−8. Note, this
is the error introduced in the evaluation of the momentum flux balance every single time
step. As shown in Section 3, there are several sources, augmenting the numerical error. On
top of that, they are accumulated in numerous time steps. The failure of a finite-volume
code, calculating with single precision the flow case mentioned above, is shown in Fig. 6.
The error shows up dramatically in entropy, density, and temperature. One can observe it
already atM = 0.1. The error in pressure is shown in Fig. 7. It does not look as dramatic at
the present Mach number as the entropy, and might be overlooked in more complicated flow

FIG. 5. Comparison of the error Eqs. (43) and (46),M = 0.01, 400× 8 cells.
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FIG. 6. Entropy along the axis of the tube. Comparison of two calculations, performed with single and double
precision arithmetic, 400× 8 cells,M = 0.01.

situations, where the aid of an analytical solution is not available. At lower Mach numbers
the solution becomes useless.

Computation with very low Mach numbers.To demonstrate the desired capability of
calculating flows at very low Mach numbers without harm from cancellation errors, we
show in Fig. 8 a flow atM = 10−11, using single precision arithmetic (seven digits). In this
case we chose the reference state to be the ambient conditions%o, uo= 0, andpo. They were
prescribed constant in space and time. To contrast this result, we show in Fig. 9 a flow-field,
calculated with the same numerical precision, but with an unaltered code atM = 10−6.

6. CONCLUSION AND REMARKS

We have shown that cancellation errors play a significant role in calculating low Mach
number flows. In the past, several authors treated this problem, but no attempts were made
to precisely show the role of the computer accuracy and numerical cancellation for this
problem. This mechanism was demonstrated and identified in several important steps within
a common finite volume code: time integration, flux balance, and flux evaluation.

FIG. 7. Failure of a conventional scheme, 400× 8 cells,M = 0.01.
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FIG. 8. Calculation atM = 10−11, 400× 8 cells.

Applying proper numerics, the cancellation problem in calculating low Mach number
flows can be cured. This was shown in an example, calculating a flow atM = 10−11, using
a single precision Fortran on a common workstation. The method used is still conservative
and capable of calculating high Mach number flows.The basic idea is to introduce a

FIG. 9. Failure of an unaltered code atM = 10−6, 400× 8 cells.
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reference state into the governing equation and effectively calculate perturbations to this
state, without neglecting any terms of the full original equations. The effort for doing so in
an existing program is moderate.
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